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1. 

ABSTRACT 

/ 17533 
The propagating tensile fracture is treated as a steady state 

dynamic mixed boundary value problem in which the displacement at 

the fracture surface is specified. The displacement is made to 

approximate a Griffith crack at all velocities of fracture propaga- 

tion. Although the shape of the stress distribution curves are 

identical to those determined by Yoffe, the magnitude of the 

tensile stress immediately ahead of the fracture front decreases 

with increase of velocity. The applied stress necessary to make 

a fracture of unvarying shape propagate at any particular velocity 

also decreases with increase of velocity. It appears that frac- 

tures of unvarying shape propagate at a single velocity, and start 

and stop without acceleration and deceleration. f i  d 7 t - m  
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1 . INTRODUCTION 

The propagating fracture  problem has been t rea ted  by YOFFE# 

(1951) and BILBY and BULLOUGH (1954) as  a steady s t a t e  dynamic 

boundary value problem. The f rac ture  i s  i n i t i a l l y  i n  the  form 

of a very f l a t  e l l i p s e  ( a  Gr i f f i t h  crack) which moves across a 

medium under tension. The fracture  is  assumed t o  be of constant 

length,  with the medium healing behind the fracture .  

lm.:, all-La --de') ILIvu~I ul -s a propagating fracture has two drawbacks, F i r s t ,  

of course,  a r e a l  medium never hea ls  behind a f racture .  Secondly, 

while the  f rac ture  maintains a constant length,  i t s  shape changes 

with veloci ty .  The f i r s t  of these drawbacks has been eliminated 

by YOFFE (1951) by studying the region i n  t he  immediate neighbor- 

hood of the f rac ture  f ront  of a very long f r ac tu re  so t h a t  the 

events a t  the t a i l  end have very l i t t l e  e f f ec t .  The object  of 

t h i s  paper i s  t o  examine the case of a moving G r i f f i t h  crack the  

shape of which does not change with veloci ty .  This i s ,  i n  e f f e c t ,  

a mixed boundary value problem i n  which the displacements a r e  specif ied 

for  the moving p a r t  of the system. An addi t ional  impetus t o  t h i s  

study is  t h a t  f a c t  t h a t  displacements a t  r e a l  f rac ture  surfaces  

appear t o  be small a t  a l l  veloci t ies .  
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2 .  SHAPE OF THE YOFFE CRACK 

L e t  the  f r ac tu re ,  of length 2a, move i n  the  pos i t i ve  x 

d i rec t ion  with a ve loc i ty  c ( f igure 1). The z axis  i s  p a r a l l e l  

t o  t he  f r ac tu re  f ron t ,  while t h e  y ax is  i s  normal t o  the  f r ac tu re  

surface.  A st ressp = T is applied a t  m. The s t r e s s e s  p 

around the  f r ac tu re  a r e  t o  be determined. 
w i j  

From symmetry, we may 

study only the  half-space y>o. I f  thE applied stress T i s  removed 

then, for Yoffe's problem, the moving p a r t s  oE the  system have the 

following boundary conditions: 

P 
i j  

0 

x ' = x - c . ~ ,  cumd 
u and v a re  the  displacements i n  the  x and y d i rec t ions  respectively.  

From equation (10) of Yoffe we f i n d  

. .. . ( 2 )  



4,  

w h e r e  C = fracture veloci ty  

C - - d i l a t a t i o n  wave ve loc i ty  
1 

= transverse wave velocity.  c2 

Expression (2) can be rewritten as 

X and c1 a r e  the Lame' constants, 

Clearly,  v depends on the f rac ture  ve loc i ty  e. 

Yoffe crack a t  various ve loc i t i e s  is  shown i n  f ig.  2. 

shape is a f l a t  ellipse and closely corresponds t o  a G r i f f i t h  crack, 

b u t  at higher ve loc i t i e s  the Yoffe crack is no longer a f l a t  ellipse 

and can no longer be approximated t o  a G r i f f i t h  crack. 

branching veloci ty ,  for  instance, 

The shape of the 

A t  c = o the  

A t  the 

= 1.1 4a . _ T  
x'= 0 P 

fo r  a medium w i t h  a Poisson's r a t i o  of 0 , 2 5 ,  A s  Yoffe sets no 

cons t r a in t  on the value of T/P we assume the r a t i o  is not very 

small. 



3. STATEMENT OF THE PROBLEM 

A t e n s i l e  f r ac tu re  is here defined as a f r ac tu re  caused by 

purely t e n s i l e  stresses acting at or near the f r ac tu re  f ron t  and 

surface.  Hence the boundary conditions for a t e n s i l e  f r ac tu re  of 

constant shape and length a re ,  on y = 0 ,  

= o  for a l l  IC* pW 

where n, the shape factor, i s  a small a r b i t r a r y  constant. This 

las t  expression insures  that  the f r ac tu re  always approximates a 

f l a t  ellipse. 

The solut ion can be obtained i n  a manner analogous t o  those 

of YOFE'E (1951) and BILBY and BULLOUGH (1954). W e  assume displace- 

ments of the type 

. . ( 5 )  

where A ( s )  is an unknown function t o  be determined from the boundary 

conditions.  As y = o the expression for v becomes 
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A comparison of the dual-integral equations (6) with equations (7) 

of Yoffe shows that a solution of A ( s )  w i l l  be similar to that of 

Yoffe, if the factor - - T is replaced by n ( P " t l )  
H W-1) 

The expressions for the stresses are then, in the notation of BILBY 

and BULUWGH (1954) 

where 



The expressions for the stresses can be considerably simplified 

if one concentrates only on the region in the immediate neighborhood 

of the fracture front. ( r, 8 ) be defined 
such that 

Let a coordinate system 

and let 

where 
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The expressions for the stresses in the present case are, thus, 

The stresses ;P are then calculated from 
66' ppp and h e  

and pkr with the help of well known transformation k x  , bv% 
' Inen \  
L 7 2 0 l  -- 

The magnitude of the stress pY, = 7" that has *to be applied to 

make the fracture propagate at any particular velocity can be 

easily calculated and is given 

4. RESULTS 

The stresses , Prr and ky6 were computed on the Rice 88 
Computer. The values of the independent variables used are: 

Poisson's ratio 6 = 0.25; relative fracture velocity c/c 

from 0.20 to 0.80; and 6 from Oo to 90°. The curves are 
2 

presented in figure 3. The applied stress P 

on the Rice Computer. 

was also computed 

Figure 4 shows the change in magnitude of 
YY 

p with increasing velocity. 
YY 
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The shapes of the curves i n  f igure  3 are iden t i ca l  t o  those 

of YOFFE (1951) and d i f f e r  only i n  magnitude, The branching ve- 

l o c i t i e s  i f  such ve loc i t i e s  e x i s t ,  a r e  iden t i ca l  t o  those given 

i n  table 2 of MANSINHA (1964). 

I n  the present case the stresses depend on N, the shear moZulus 

I n  Y o f f e ' s  problem the stresses w e r e  independent of a l l  elastic 

constants w i t h  the exception of Poisson's r a t i o ,  

a t  first s igh t  t h a t  t h e  r e s u l t s  are independent of n, the shape 

factor, as n appears as a common factor i n  a l l  the expressions 

pij. If t rue ,  this would mean that the r e s u l t s  would be va l id  for 

a moving disturbance of any unvarying shape. Such is not the case 

because n has to  be small for the boundary conditions t o  be va l id ,  

Consequently the propagating f rac ture  w i l l  always approximate a f l a t  

ellipse. 

It would appear 

5, DISCUSSION 

From a study of f igures  3 and 4 it w i l l  be present ly  shown 

t h a t  a f r ac tu re  of constant shape w i l l  tend t o  propagate a t  a 

s ing le  ve loc i ty  c ,  which is  the  s a m e  as the maximum veloci ty ,  c 

It may sa fe ly  be assumed that  'p 
m' 

must a t t a i n  a minimum value 68 

-r a t  any point ( ro , 8 1 ahead of the f r ac tu re  before  the 

f r ac tu re  can propagate. 

if >, '2 . The f rac ture  w i l l  come t o  a stop if < 2 ,  
ee 60 

Thus the  f r ac tu re  can move forward only 
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From f igure  3 it can be seem that pee decreases i n  magnitude 

with increase of veloci ty .  Therefore when c > cm, p e f  , r over 

a l l  $ , and the f r ac tu re  w i l l  stop suddenly, Clearly then c 

is  the maximum velocity of propagation for a f r ac tu re  of constant 
m 

shape. 

branching velocity of YOFFE (1951). 

This ve loc i ty  cm w i l l ,  i n  general ,  be d i f f e r e n t  from the 

The ve loc i ty  cm is also the only ve loc i ty  a t  which a f r ac tu re  

of  constant shape propagates. Referrring t o  f igu re  4 ,  it is  seen 

tha t  the applied stress P = T required to  maintain a f r ac tu re  

of constant  shape moving a t  any ve loc i ty  decreases w i t h  increase 

of veloci ty .  w 
the stress required t o  f o r m  and maintain a G r i f f i t h  crack of shape 

w 

The magnitude of P = T a t  c = 0 is  interpreted as 

. For our purpose l e t  u s  assume t h a t  such a * ’ 1  L j y2 rpL i CL’ - . 
stat ic  G r i f f i t h  crack already e x i s t s  i n  an unstressed e las t ic  

body. L e t  a gradually increasing stress P 

body, From f igure  4 it is  c lear  tha t  for l o w  values of P the 

f r ac tu re  should move at high veloci t ies .  However, u n t i l  P reaches 

= - L  , the f rac ture  w i l l  a value,  say Tm, such t h a t  

be static. When i-33= ?z the f r ac tu re  w i l l  move forward 

= T be applied to  the 
YY 

w 

YY 

4? 8 
I -. 

a t  a ve loc i ty  cm. 

L e t  us  suppose t h a t  t h e  stress P = T continue t o  increase YY 
even after reaching t h e  value T = Tm. Since t h i s  magnitude of P w 
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is g rea t e r  than tha t  appropriate t o  a veloc i ty  cm and t h e  shape 

factor n ,  two  effects a r e  possible. From expression (10) it i s  

clear that  an increase i n  P w i l l  mean an increase i n  n ,  or a 

decrease i n  c,  or both. I f  n is  constant,  and c decreases, from 

f igu re  3 it w i l l  be seen t h a t  0 ? k- over a l a rge  range 
-& 1 @ t i  

of  angles. The f r ac tu re  w i l l  lose energy by branching and w i l l  

therefore  r eve r t  back t o  a veloci ty  c . I f  c i s  constant and n 

changes then the  e n t i r e  set of curves i n  f igure  3 w i l l  be sh i f t ed  

upwards. i f  the change i n  n i s  s u f f i c i e n t ,  YoEEe$s anaiys is  w i i i  

be more per t inent  t o  t h e  problem, and the f r ac tu re  w i l l  lose 

energy by branching af ter  reaching the  branching ve loc i ty  c 

w 

m 

b' 

Experimental evidence for the  above set of conclusions is  not  

lacking. 

s i g n i f i c a n t l y  during propagation. I n  many cases f r ac tu res  

appear t o  be able  t o  reach a maximum veloc i ty  without branching 

(SCHARDIN, 1959). SCHARDIN (1959) has a l s o  observed t h a t  no 

f r a c t u r e  moving a t  t h e  maximum veloc i ty  has been observed t o  

decelerate ,  Experimentally observed v e l o c i t i e s  which are lower 

than the  maximum may be due t o  a succession of s tops and starts 

or p l a s t i c i t y  effects. The former has been experimentally observed 

(MANSINHA, 1962). Extensive plast ic  deformation occurs a t  the t i p  

of s ta t ic  cracks because high stresses act  a t  the  t i p s  for a 

r e l a t i v e l y  long t i m e ,  Further, as no physical mass is moving a t  

M o s t  f rac tures  have n o t  been observed to  change shape 
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t h e  f rac ture  veloci ty ,  it is  not impossible for  a f rac ture  t o  

s t a r t  and s top without accelerat ion or  decelerat ion.  

The main l imi ta t ion  of the present analysis  is  the fact t h a t  

quant i ta t ive  estimates fo r  c and cannot be made from the  theory, m 

because of the presence of the a r b i t r a r y  constants n and k 

the  expressions f o r p  . However, experimental test of the  

q u a l i t a t i v e  conclusions can be made with high resolut ion equip- 

i n  
0 

i j  

ment  t o  determine (1) if the  stress f i e l d  ahead of a f rac ture  

mcuing a t  the maximum veloci ty  changes j u s t  before the  f rac ture  

stops: ( 2 )  i f  t he  displacement a t  f rac ture  surface changes with 

l fe loci ty  and (3)  i f  l o w  veloci ty  f rac tures  a r e  e s sen t i a l ly  

d i f f e r e n t  f r o m  those moving a t  the  maximum veloci ty .  

6 .  CONCLUSION 

The propagating t e n s i l e  f rac ture  may be approximated by 

a moving G r i f f i t h  crack whose shape does not change with 

veloci ty .  

determined by the  f a c t  t h a t  the stress ahead of the  f r ac tu re  

f ront  decreases with veloci ty .  

make the  f rac ture  propagate a t  any ve loc i ty  decreases with increase 

of veloci ty .  These cha rac t e r i s t i c s  imply t h a t  a moving G r i f f i t h  

The maximum veloci ty  of t h i s  type of f rac ture  is  

The applied stress necessary t o  

crack of unvarying shape moves a t  a s ingle  constant veloci ty ,  

without accelerat ion or  deceleration. 



13. 

ACKNOWLEDGEMENT 

I wish to thank Dr. J. C1. De Bremaecker for his interest in 

the work and m a n y  interesting discussions. This work was sup- 

ported by Grants NsG-6-59 of the National Aeronautics and Space 

Administration and 6-14306 of the National Science Foundation. 
?-=- - 



REFERENCES 

BSLBY, B,  A, and BULLOUGH, R. 1954 Phil. Mag. 45, 631. 

DURRELLS, A, J,, PHILLIPS, E. A. and TSAO, C. €3. 1958 

Analysis of Stress and Strain p. 134 (McGraw Hill). 

MANSINHA, L. 1962 Radiation from Tensile Fractures p. 13 

(Ph. D. Thesis, University of British Columbia, Vancouver) 

MANSINHA, L. 1964 Bull. Seis. SOC. Am. (in press). 

S C H ~ R D J P ~ ,  H, Iy5q F m b  eclntu4 k.-6 % . L - & V - - k l 4  d-4 v . 9 3  
42 YOFFE, E, H, 1951 Phil. Mag. 



X 

a 

a, 

'-2 E 



1.0 

P 0 05 

0 

- \ \  \\ 

Fig. 2.  
A t  zero velocity the shape i s  f l a t  and coincident with the 
x axis. 

Shape of the Yoffe crack a t  various velocit ies .  

Poisson'-s ratio of the m e d i u m  i s  0.25. 
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Fig. 4. Applied stress necessary to  move a Griffith crack 
of unvarying shape a t  different velocities,  The medium has 
a Poisson*s ratio of 0.25. 


